Section 1: Decimals

4 Easy steps to follow to order and compare decimals

Example rule: from smallest to the biggest number

1. Stack up the number being compared and line up the decimal point.
2.Put in zeros so that each number has the same number of decimal digits.

The zero acts as a place holder.
3.Compare each place value one by one, starting with the highest value digit (the one furthest to the left) If the number is the same move to the next highest value.
4. Order the numbers from the least to the greatest
5.Remove the zeros you have added

The number 1.743 can be broken into four parts:

Section 2: Rounding decimals

Round 5.1731 to the nearest hundredth.
Step1: Identify given $5.1 \geqslant 31$
Step 2: …and the one 5.1731
next to it
Step3:
Round to nearest ten

Remove all digits after given place value

Rounding Decimals

Find your place and look next door. 5 or greater, add one more.

All digits in front, stay the same.
All digits behind, zero's the name.

Round 1.362 to the nearest hundredths.

$$
1.362
$$

6 is at the hundredths
1.360

We look next door and find the number 2.
2 is less than 5 and so 6 remains the same.

Round 25.378 to the nearest tenths.
25.378
25.400

3 is at the tenths place.
We look next door and find the number 7 .

Section 3: Percentages and equivalent fractions

Percent relates to the number of parts per 100.
The symbol used to show percentage is \%. You can convert between percentages, fractions and decimals.

FRACTION DECIMAL PERCENT NUMBER LINES 0 TO 1

	1								
0	$\frac{1}{10}$	$\frac{2}{10}$	$\frac{3}{10}$	$\frac{4}{10}$	$\frac{5}{10}$	$\frac{6}{10}$	$\frac{7}{10}$	$\frac{8}{10}$	$\frac{9}{10}$

	1	1	1	1	1	1	1	1	1
0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9

	\mid	$\mid c$							
0	10%	20%	30%	40%	50%	60%	70%	80%	90%

		Fraction	Decimal	Percent
\square				
		84	0.84	84%

Section 4: Perimeter

Perimeter and Area

Perimeter

Perimeter is the length of the outline of a 2D shape.
Perimeter $=$ length + length + width + width
Example: $7+7+3+3=20$

A rectilinear shape is a shape that has lots of sides that meet at right angles.

Example: $2+2+3+3+5+5=20$

Area

Area is the amount of space taken up by a 2D shape (the inside of the shape).

Area $=$ Length x width
Example: $3 \times 5=15$

Section 5: Line Graphs

A line graph is a graphical display of information that changes continuously over time.
Within a line graph, there are various data points connected together by a straight line that reveals a continuous change in the values represented by the data points.

The data being measured is shown on the
vertical axis. The time the data is being measured over is shown on the horizontal axis.

Data is plotted on to a line graph in the same way as a coordinate grid. These data plots are then joined with straight lines.

We can use the line of the graph to describe general trends in the change of the measurement over time, or to find precise measurements at a given time.

A Line Graph to Show the Temperature of the Classroom

Section 6: Reading and interpreting Timetables

Timetables can be full of important information and are usually laid out in a table.

Timetables use a 24 -hour clock.

24-hour time 01234567891011121314151617181920212223 a.m. s_{s}. 12-hour time

Swanage Holiday Camp		
Activity	Red Group	Blue Group
Mini tennis	$09: 30$	$09: 20$
Painting	$10: 45$	$10: 10$
Mountain biking	$12: 45$	$10: 55$
Lunch	$13: 25$	$12: 55$
Football	$14: 15$	$13: 40$
Home Time	$15: 10$	$15: 00$

E.g.

1. How many minutes will Blue Group be playing mini tennis?

2. How many minutes longer will Red Group be painting than Blue Group?

Steps to success:

1. Identify the row.
2. Identify the column.
3. Identify the operation to use to answer the question.
4. Solve using time converting skills.
5. Check your answer makes sense.
